Flag varieties \& Schubert Calculus

$H^{*}(G / B)$

Take Levinson Simon Fraser University

Combinatorics beys in Covilhã July 2023, Portugal

Geometry of planes

Q1. How many solutions does $A \vec{x}=\vec{b}$ have? 0,1 or ∞.

$$
{ }_{m \times n}^{\Upsilon} \uparrow_{\in \mathbb{R}^{n}} \imath_{\in \mathbb{R}^{m}}
$$

Q2. Given 4 geneal lives in \mathbb{C}^{4}, how many lines intersect all 4? 2 .

Schubert calculus answers questions about linear algebra using combinatorics.

Ex: Q2 becomes:
How many ways can we fill in \square by $\{1,2,3,4\}$

such that entries increase $\uparrow \rightarrow$? Ans:	3	4	
1	2	4	
	3		Two.

Subspaces and Flags

A k-dim'l vector subspace $V \subseteq \mathbb{C}^{n}$ can be described as the row span of a $k x n$ matrix:

$$
V=\operatorname{row}\left(\begin{array}{c}
\uparrow \\
k \\
\downarrow
\end{array}\left[\begin{array}{ccc}
x_{11} & \cdots & \cdots \\
\vdots & & \\
x_{1 n} \\
x_{k 1} & \cdots & \cdots \\
\vdots \\
k_{k n}
\end{array}\right]\right)
$$

That is, $\quad\{$ full rank $k \times n$ matrices $\} \xrightarrow{\text { row span }}\left\{k\right.$-dimil subspaces $\left.V \leq \mathbb{C}^{n}\right\}:=G_{r}(k, n)$. $\subseteq \mathbb{C}^{k n}$

This is called the Grassmannian,

The entries $x_{i j}$ are called Stiefel coordinates and they are not unique:

$$
\begin{aligned}
\text { e.g. }\left[\begin{array}{lllll}
1 & 0 & 2 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 1
\end{array}\right] & \xlongequal[\text { row ops }]{ } \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 / 4 \\
0 & 0 & 1 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & 1 / 4
\end{array}\right] \\
& =\quad r o w(g \cdot A), g \in G L_{k} .
\end{aligned}
$$

Fact: $\operatorname{Gr}(k, n)=G_{k} \backslash\{$ full-rank $k \times n$ matrices $\}$

Rok: k-dimil subspace $\Leftrightarrow(k-1)$-plane (not through the origin) in \mathbb{P}^{n-1}.... $\begin{gathered}\end{gathered} \quad$ of \mathbb{C}^{n}

Running example: $\operatorname{Gr}(2,4)=\left\{\operatorname{dim} 2\right.$ subspaces in $\left.\mathbb{C}^{4}\right\}=\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}$. (3D space)

Schubert cells and varieties

Recall: Every matrix is row-equivalent to a unique matrix in (row) echelon form:
eng. $\quad\left[\begin{array}{lllllllll}0 & 1 & * & 0 & * & * & 0 & * & x \\ 0 & 0 & 0 & 1 & * & * & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & *\end{array}\right]$
with o's left of pivots and in pivot columns.
pivot columns $247=\underbrace{(123)}_{\text {leftmost possible }}+(124)$

$$
\lambda=124=\square
$$

a Young diagram or integer partition.

You can check: det_{247} is the leftmost nonzero maximal minor.
a (unchanged by row operations).

Note: most matrices reduce to the form

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
1 & 0 & 0 & * & \cdots \cdots \cdots & x \\
0 & 1 & 0 & x & \cdots & * \\
0 & 0 & 1 & * & \cdots \cdots \cdots & *
\end{array}\right] \underbrace{}_{n-k} \quad \begin{array}{l}
\lambda=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \\
\left(\Leftrightarrow \operatorname{det}_{123} \neq 0\right)
\end{array}}
\end{gathered}
$$

We call $X_{\lambda}^{0}=\{$ subspaces $V \in \operatorname{Gr}(k, n): \operatorname{det}(1 \cdots k)+\lambda$ is leftmost $\neq 0$ det $\}$, a (Grassmannian) Schubert cell.

The closwe $X_{\lambda}=\overline{X_{\lambda}^{0}}$ is a (Grassmannian) Schubert variety.

Facts: $\operatorname{Gr}(k, n)=\frac{11}{\lambda \leq X_{\lambda \times(n-k)}^{0}}$ complex cell structure on $\operatorname{Gr}(k, n)$.

- $X_{\lambda}^{0} \simeq \mathbb{C}^{k(n-k)-|\lambda|},|\lambda|=\#$ boxes $\left.(\lambda)\right]$

That is, $\operatorname{codim}\left(X_{\lambda}^{0}\right)=|\lambda|$.

$$
\cdot X_{\lambda}=\frac{11}{\lambda \varepsilon \mu} X_{\mu}^{0}
$$

Why we index with partitions!

Ex: $\operatorname{Gr}(2,4)=\left\{2\right.$ dimil subspaces of $\left.\mathbb{C}^{4}\right\} \curvearrowleft\left\{\right.$ lines \mathbb{P}^{1} in \mathbb{P}^{3} projective space $\}$.

Schubert stratification:

$$
\begin{gathered}
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & x & 0 \\
A s & x \rightarrow \infty
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 / x & 1 & 0
\end{array}\right]\right) \\
{\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right]-\left[\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
\lambda=\phi \\
\lambda=0
\end{gathered}
$$

general
lines
lines meeting a certain line

lines containing a certain point

As the example suggests, a Schubert variety prescribes how the k-plane meets certain other planes.

Def: A complete flag F_{0} in \mathbb{C}^{n} is a sequence of subspaces

$$
F_{1} \subset F_{2} \subset \ldots \subset F_{n}=\mathbb{C}^{n}, \quad \operatorname{dim} F_{i}=i
$$

Def: $\quad X_{\lambda}\left(\mathcal{F}_{.}\right)=\left\{\right.$subspaces V such that $\left.\operatorname{dim}\left(V \cap \mathcal{F}_{i}\right) \geqslant n-k+i-\lambda_{i}\right\}$

$$
"=" \text { for } X_{\lambda}^{0}\left(\mathcal{F}_{0}\right)
$$

Fact: "Echelon form" $=X_{\lambda}$ using the "Standard reverse flag":

$$
\mathcal{F}_{0}=\underset{E_{1}}{\left\langle e_{n}\right\rangle} \underset{F_{2}}{\left\langle e_{n}, e_{n-1}\right\rangle \subseteq \cdots \subseteq\left\langle e_{n}, \ldots, e_{1}\right\rangle=\mathbb{C}^{n}}
$$

Crash course: Cohomology and Counting
The cohomology ring $H^{*}(\operatorname{Gr}(K, n))$ is a graded ring that lets us count solutions to geometry problems.

Elements: equivalence classes of formal sums of closed subvarieties
$e_{=j} \quad X_{\lambda} \subseteq \operatorname{Gr}(k, n) \rightarrow$ cohomology class $\left[X_{\lambda}\right]$.
if X deforms continuously to Y in $\operatorname{Gr}(k, n) \leadsto[X]=[Y]$.
Ring Structure: + : formal sum/union

- If $X, Y \leqslant G_{r}(k, n)$ intersect transversely,
$[X] \cdot[Y]=[X \cap Y], \sim$ enables enumerative geometry!

Ex：$\left\{\right.$ lines through 4 given lines $\left.L_{1}, L_{2}, L_{3}, L_{4}\right\} \subseteq G_{r}(2,4)$

$$
\begin{aligned}
& =\left\{\text { lines though } L_{1}\right\} \cap\left\{\text { lines through } L_{2}\right\} \cap\left\{\cdots L_{3}\right\} \cap\left\{\cdots L_{4}\right\} \\
& \left.\qquad X_{0}\right] \cdot\left[X_{0}\right] \cdot\left[X_{0}\right] \\
& \left.=\left[X_{0}\right]\right]^{4}\left(\text { this is transverse if } L_{1,}, \cdots, L_{4} \text { are geneal }\right) .
\end{aligned}
$$

Peris cull：$\lambda \cdot \square=\sum \lambda^{\prime}$ obtained by adding a box to λ

$$
\begin{aligned}
\underbrace{\square \cdot \square \cdot \pi \cdot \sigma} & =(日+\boxplus) \cdot \square \cdot 0 \\
& =(B+\boldsymbol{B}) \cdot \square \quad \text { 日凹 } \ddagger \boxplus
\end{aligned}
$$

Ex: Calculate \square^{6} in $H^{*}(\operatorname{Gr}(3,6))$.
\square

Ans: 5 points.

$$
\begin{array}{lllll}
456 & 356 & 346 & 256 & 246 \\
123 & 124 & 125 & 134 & 135
\end{array}
$$

Fact: $H^{*}(G r(k, n))=\bigoplus_{\lambda \leq k \emptyset_{n-k}} \mathbb{Z} \cdot\left[X_{\lambda}\right]$
** Every class in H^{*} is equiv. to a sum of $\left[x_{\lambda}\right]^{\prime} s$.

In particular, $\left[x_{\lambda}\right] \cdot\left[x_{\mu}\right]=\sum_{v:} c_{\lambda_{\mu}}^{v}\left[X_{v}\right]$

$$
\begin{aligned}
& |v|=|x|+|\mu|^{\prime} \\
& v \leq H^{*} \text { is graded by codimension) }
\end{aligned}
$$

for some structure constants $c_{\lambda \mu}^{v} \in \mathbb{Z}_{\underset{\gamma}{\geqslant 0}}$.
counting certain intersections!

Jewel of combinatorics: Explicit combinatorial formulas for $C_{\lambda_{\mu}}^{2}$.

Schwa polynomials

These theorems ar shadows of a polynomial model for $H^{*}(\operatorname{Gr}(k, n))$:

Theorem: There is a subjective ring map

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]^{S_{k}} \longrightarrow H^{*}(\operatorname{Gr}(k, n))
$$

Ring of symmetric polynomial
Sending the Schur polynomial $S_{\lambda}\left(x_{1},-x_{k}\right) \longmapsto\left[x_{\lambda}\right]$.

Many Formulas exist for the Schur polynomial, the most-used one is as follows.

DeE: A semistandard Young tableau T of shape λ is a filling of λ by natural numbers, such that rows weakly increase $\rightarrow 22$ ok cols strictly increase \uparrow (2) $\frac{1}{2}$ not

The weight of T is $x^{T}:=x_{1}^{\# 1^{\prime} s} x_{2}^{\# 2 ;} \ldots$

Ex: 4

$$
\text { Ex: } \quad \begin{array}{llll}
4 & \\
2 & 2 \\
1 & 1 & 2 & 3
\end{array} \quad \text { weight } x^{\top}=x_{1}^{2} x_{2}^{3} x_{3} x_{4}
$$

Def: $S_{\lambda}\left(x_{1},-, x_{k}\right)=\sum x^{\top}$
T semistandard,
shape λ, entries $\leq K$

$$
\begin{aligned}
& \text { Ex: } S_{B}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2} \text {. } \\
& \begin{array}{lllllll}
2 & 3 & 2 & 3 & 2 & 3 & 3 \\
11 & 11 & 12 & 12 & 13 & 13 & 23
\end{array}
\end{aligned}
$$

Ex: $\begin{aligned} S_{i} \\ i_{1} \\ i_{0}\end{aligned}\left(x_{1}, \ldots, x_{k}\right)=$ the $d^{\text {th }}$ elementary symmetric polynomial

$$
=\sum_{i_{1}<i_{2}<\cdots<i_{j} \leqslant k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} .
$$

Multiplying
Peri rule: $S_{\lambda} \cdot S_{\text {䏠j }^{j}}=\sum S_{\lambda^{\prime}}$ over all λ^{\prime} obtained by adding d boxes to λ in different ours

$$
S_{\lambda} \cdot S_{\frac{\sqrt{n-1-1}}{-J \rightarrow}}=\sum S_{\lambda} \ldots . . . \text { different columns }^{\lambda^{\prime}}
$$

$$
\text { Ex: } \square \cdot \square=\Pi 1+B \square+ت
$$

Littlewood-Richardson rule: $\lambda \cdot \mu=\sum_{|v|=|\lambda|+|\mu|} c_{\lambda_{\mu}}^{v} \cdot v$
where $c_{\lambda_{\mu}}^{v}=\{$ ballot tableaux of shape v / λ

Def: We say a semistandard tableau T is ballot or $L-R$ if:
Read the entries:

At every step, we require \#1's $\geqslant 2$ 2's $\geqslant 3^{\prime} s \geqslant \cdots$.

Ex:

Ex: You try:

